

242 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

Improving your Active Directory
security posture: AdminSDHolder
to the rescue
Received (in revised form): 8th November, 2022

Guido Grillenmeier
Principal Technologist EMEA, Semperis, USA

Guido Grillenmeier is the Principal Technologist of Semperis. Based in Germany, Guido has been a
Microsoft MVP for Directory Services for 12 years. He spent 20+ years at HP/HPE as Chief Engineer. A
frequent presenter at technology conferences and contributor to technical journals, Guido is the co-author
of Microsoft Windows Security Fundamentals. He has helped various customers secure their Active
Directory environments and supported their transition to Windows 10/m365 and Azure cloud services.

Semperis, 221 River Street, 9th Floor, Hoboken, NJ 07030, USA

Tel: +1-703-918-4884; E-mail: info@semperis.com

Abstract This paper covers a key aspect of Active Directory (AD) security, which is often
overlooked: the wealth of default read permissions that Microsoft has granted to any user
and computer in the directory. The concept of an AD forest being a security boundary must
now not only be understood as a protective feature; if you do not have an account in an
AD forest, you cannot access any of its AD objects and connected resources. Instead, the
security boundary must also be understood as the scope of reach for an intruder to access
and assess the security of AD objects once they gain a foothold into an organisation’s
network. Removing certain default read permissions in AD is a low-risk operation that pays
off by making it much more difficult for intruders to perform reconnaissance that helps
them in planning their next steps to domain dominance. Understanding the mechanism of
the built-in logic that Microsoft has added to AD to protect the most privileged accounts in
the directory (eg members of the domain admins group) is key to realising both the benefits
and weaknesses of this mechanism. This paper discusses how this protection mechanism
works behind the scenes and how it can be adjusted to remove risky default read
permissions to make AD safer. Many AD infrastructures were implemented many years ago
and operated by different teams of administrators over time, so most AD implementations
today have incurred a solid ‘misconfiguration debt’. This paper covers one aspect of that
debt: specifically, how to fix the permissions on objects that had once been added to
a privileged group but are no longer a part of that group. Essentially, locking down the
visibility of objects and general read permissions in AD is vital to reducing the AD attack
surface and thus increasing its security posture.

KEYWORDS: identity security, default security, Active Directory (AD), privileged objects,
AdminSDHolder, SDPROP, MITRE ATT&CK: reconnaissance, MITRE D3FEND: harden

RESTRICTING RECONNAISSANCE
AND LATERAL MOVEMENT
Proper lockdown has a direct impact on
how difficult — or easy — it is for intruders

to use Active Directory (AD) against you
during the reconnaissance phase of an attack.
As shown in Figure 1, this phase occurs
after a malicious user establishes a foothold

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 243

in your corporate network, typically by
deceiving your employees via phishing
e-mails or special malicious websites. By
this stage, the intruder typically has taken
over the AD account only of a normal
authenticated user (ie any unprivileged
employee account that does not administer
your company’s AD).

You may think that an unprivileged user
is no threat to your company’s security,
but how long will an intruder remain
unprivileged? Intruders initially use known
vulnerabilities of the operating system
(OS) or drivers on insufficiently patched
endpoints to elevate their local privileges
and thus quickly gain administrative access
on the compromised client. This allows
them to disable other protections that
may exist on the client, download further
malware, and establish a command-and-
control system usually enabling direct remote
access by other gang members. The next
goal would be to move laterally to other
clients, performing proper reconnaissance
with the focus to compromise a domain

admin account to eventually gain domain
dominance.

Nonetheless, the intruder’s real target
is clear: reaching and extracting your
sensitive business data to put you under
pressure. Better yet, increasing that pressure
by encrypting as many systems in your
environment as possible, including all servers,
their backups and the safety copies of those
backups. These actions are then followed
by a friendly ransom note, requesting a
Bitcoin payment within a few hours or days,
and promising that upon payment you will
receive a decryption key and your sensitive
data will definitely not be released to the
highest bidder on the Dark Web.

Would you pay?
Ideally, you will not need to answer

that question. Instead, you will have put
your effort into preventing intruders from
reaching their goal, taking over your AD and
destroying your company.

The first step is to make it difficult for any
intruder to locate your privileged users and
read sensitive data from your AD.

Figure 1: Phases of a ransomware attack

Grillenmeier

244 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

LOCKING DOWN AD CAN MAKE THE
DIFFERENCE
A ‘lockdown’ of AD usually refers to
permission changes in the directory (ie
changing some of the default permissions).
Unfortunately, these permissions are much
too open, giving away too much of the
information stored in your AD to the bad
guys. Typical users and business apps rarely
need this information, so removing some
permissions in AD brings you much closer
to the general best practice of IT security:
the least privilege model, in which you grant
users only as many permissions as they need
to do their job.

For any permission changes in AD,
however, you always need to weigh the pros
and cons of how those changes could affect
your business apps. After all, a perfectly
safe AD that fails to support your business
apps is no help to you. Ideally, you have
a solid test environment that contains not
only a test AD forest (configured just like
your production AD) but also a copy of the
most critical business apps you use. This
environment enables you to test the impact
of any permission changes in AD before you
implement them in production.

In any case, permission changes must
be planned carefully (see Figure 2). The

good news is that reverting to the original
permissions is fairly easy (for example, if
your testing overlooked some artifacts).
Documentation of which permissions you
are changing in AD is critical to enable you
to undo any such changes. A proper AD
auditing tool can do this for you, keeping
you in a safe spot.

YOUR PRIVILEGED OBJECTS ARE A
KEY TARGET FOR INTRUDERS
If you must choose a specific area to begin
a lockdown of your AD, the first choice
should clearly be your privileged accounts
and groups. These are your enterprise and
domain admins groups and their members,
but also those other special groups such as
account operators, server operators etc. and
their members.

In a properly configured AD, none of
your business applications will use those
privileged groups and accounts. Such apps
also do not need to perform a lightweight
directory access protocol (LDAP) lookup
such as ‘who is a member of the domain
admins group’ to work. Therefore, this AD
lockdown is typically a low-risk task.

AD uses the attribute ‘adminCount’ on
objects to flag those that it considers to be
‘privileged’; the corresponding objects have
this attribute set to 1. To understand which
groups your AD considers privileged, you
can run a simple LDAP query with the
following filter:1

(&(groupType:1.2.840.113556.1.4.803:=
2147483648)(admincount=1))

This query searches only for security groups,
specifically those that are flagged with a ‘1’
in their adminCount attribute. Use your
favourite LDAP query method; for example,
DSQUERY:

dsquery * domainroot “(&(groupType:
1.2.840.113556.1.4.803:=2147483648)
(admincount=1))”

Figure 2: Changes to AD permissions must be
planned carefully

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 245

or PowerShell:

Get-ADObject -LDAPfilter “(&(groupType:
1.2.840.113556.1.4.803:=2147483648)
(admincount=1))”

or the LDAP filter directly in the AD Users
& Computers Microsoft Management
Console (MMC), with the custom search/
advanced option (see Figure 3):

The results in your domain might be
different, especially if you have nested other
groups into those default privileged groups,
even temporarily. The results also depend
on the OS version of your AD domain
controllers and how you have upgraded
between versions. But ideally, your list does
not deviate too much from this default.
If it does, you might have some clean-up
work (discussed below) ahead of you. First,

it is important to understand what the
adminCount attribute means and where it
comes from, as well as some basics of AD
behaviour and design.

FINE-GRAINED DELEGATION OF
PERMISSIONS WAS A CORNERSTONE
OF AD’S SUCCESS
When Microsoft designed AD more than
23 years ago, it added powerful permission
delegation capabilities, down to every
attribute of the objects in the directory.
The basis of this capability was to store
separate permissions, called a security
descriptor or access control list (ACL), for
each object in AD as part of the object
itself (stored in the nTSecurityDescriptor
attribute). The AD security model supported
inheriting permissions down a whole tree

Figure 3: Sample default privileged groups in an AD domain

Grillenmeier

246 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

of organisational units (OUs) to efficiently
configure permissions without setting them
separately on all objects. But the model
also allowed explicit permissions to be
set directly on an object (eg another OU,
user or group) (see Figure 4). That object’s
explicit permissions could be mixed with
the inherited permissions or could block
permissions from being inherited from the
parent object.

This flexibility enabled even the largest
companies to use a central, global IT
directory that could delegate important
support tasks to other teams. At the time
AD was designed, having separate helpdesk
teams in every country that a company
operated in was common practice. Those
teams performed classic support tasks such
as resetting the password of a user account
in their region, adding computer objects or
even adding users to groups as required to
run the business.

Through permission delegation at the
proper OU level (eg OU=PHX,OU=US,
DC=mycompany,DC=com) and inheritance
of permissions down the whole OU branch
to the relevant objects (eg user, computer,
group), the members of a corresponding

helpdesk AD group could perform all
the necessary support tasks for the users,
computers and groups in any of the sub-
OUs. This ability did not require group
members to have permission to administer
the AD service itself. In other words, the
helpdesk staff was not a member of the
domain admins group and could not change
the AD configuration, promote new domain
controllers (DCs), or log on to AD domain
controllers.

Such helpdesk users with specific
delegated permissions in AD are referred to
as AD data admins, while the truly privileged
accounts, such as domain admins, are known
as AD service admins.

But what if a ‘real’ domain admin account
is in a sub-OU to which the helpdesk staff
is granted the rights to reset user passwords?
Or worse, what if someone does not grant
the helpdesk permissions at the proper
sub-OU level but instead does so at the
domain root?

Without an extra protection mechanism
in AD to prevent a data admin such as a
helpdesk account, from performing any
changes (such as resetting the password) on
a service admin, such as a domain admin

Figure 4: Sample AD permission delegation model

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 247

account or any other privileged account
or group, the overall security of any AD
implementation would be in a dire state.
Any delegated helpdesk staff could easily
compromise the entire AD.

SDPROP: THE BUILT-IN AD
PROTECTION FEATURE
The protection of those privileged AD
objects is exactly the job of the Security
Descriptor Propagation (SDPROP) process.
This process periodically (every 60 minutes
by default, or as configured) runs on each
primary domain controller emulator (PDCE)
of every domain in an AD forest and searches
for all privileged objects in the respective
AD domain. SDPROP does not just check
for memberships in the default groups
(such as domain admins) but continues to
follow any groups that are nested in those
privileged groups and mark them and their
members as ‘privileged’. As you can add
users, groups and even computer objects to
those privileged groups, any such objects
are considered during the scan. Important
caveat: the objects need to be local to the
same domain as the privileged group to be
considered by SDPROP, so do not expect
the same protection for users added from
another domain.

For each privileged object that
SDPROP finds, the process compares
the nTSecurityDescriptor of the object to a
special permission template that is reserved
solely for the purpose of protecting those
privileged objects. This template grants a
variety of permissions, but most importantly
ensures that only administrators, domain
admins and enterprise admins can change
the password of privileged accounts. If the
SDPROP process finds a deviation between
the permissions on the objects it finds
and those in the template, it replaces the
nTSecurityDescriptor of the relevant object
with that in the template and then updates
the adminCount attribute of the object with
a ‘1’.

BEHIND THE SCENES:
ADMINSDHOLDER
The special permission template that
SDPROP copies to your privileged objects
is configurable. It is the nTSecurityDescriptor
(permissions) from your domain’s
AdminSDHolder object. This name should
ring a bell: it is literally the ‘admin security
descriptor holder’ object, a container object
located in each domain’s system container
(CN=AdminSDHolder,CN=System,DC=myco
mpany,DC=com).

The default permissions set on
AdminSDHolder are comparatively
restrictive with regards to changes on the
objects. That is what you would expect from
permissions that are going to be stamped
on all the privileged groups and users in
your AD.

The sample list of permissions in Figure
5 is from a recent deployment of a test
lab on Windows Server 2019 that does
not contain Exchange servers. If you
have Exchange in your environment, you
will find more permissions added to this
template. After all, the Exchange developers
had considered ‘owning’ the AD for their
application. For now, keep in mind that
the following permissions are stamped on
all your privileged objects in the respective
AD domain. Most importantly, you can
see that this access control list (ACL) does
not have inheritance enabled. In other
words, the ACL blocks the inheritance
of the permissions set on a parent object
(OU), including those helpdesk-password
reset permissions discussed previously. In
this way, the combination of SDPROP
and AdminSDHolder protects your most
privileged accounts from poorly configured
permissions in your AD.

Technically, you can remove a few
default admin groups in AD from being
considered as privileged by the SDPROP
process, specifically the account operators,
server operators, print operators and backup
operators’ groups. The members would then
not be overwritten with the permissions

Grillenmeier

248 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

from the AdminSDHolder object. Because
each group has its own risk with respect
to elevation of privileges in AD, however,
this configuration is not recommended.
These groups are worth protecting, or even
better, not used in the first place. To learn
more about excluding (or re-including)
these groups from the SDPROP process,
see the article ‘Active Directory Security:
Understanding the AdminSDHolder
Object’.2

THE ROLE OF THE ADMINCOUNT
ATTRIBUTE
The adminCount attribute itself does not
have any true security relevance. It is a
simple support feature that enables you to
more easily use an LDAP query to determine
which objects’ permissions have been
replaced with the permissions set on that
special template, as shown earlier.

Note that once you remove a user,
group, or computer from a privileged
group, it will no longer be privileged. The
SDPROP process writes the event-id 4780
to the primary domain controller’s (PDC’s)
security event-log when stamping the
AdminSDHolder permissions on privileged
objects and updating those objects with the
adminCount attribute (set to 1). It neither
reverts those changes once an object is no
longer privileged, however, nor does it write
any event to the event-log informing you
of no longer considering them privileged.
For example, when you temporarily add
someone to the domain admins group
and the SDPROP process runs before you
remove the user, that user will still have the
locked-down nTSecurityDescriptor setting and
be marked with adminCount=1. The same is
true for any object. Ideally, then, you should
not temporarily add any user to a privileged
group. If you have done so, you should

Figure 5: Sample permissions on AdminSDHolder object

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 249

clean up the permissions and adminCount
attribute so that the user is configured back
to its original state. This clean-up process is
described later in this paper.

A CLOSER LOOK AT
ADMINSDHOLDER PERMISSIONS
With an understanding of these concepts,
are you happy with the permissions that are
granted via the AdminSDHolder object and
SDPROP to all your privileged accounts?

If you have a closer look at those
permissions, even without Exchange in the
mix, you will notice some questionable
permissions, as highlighted in Figure 6, taken
from the advanced security settings page of
the AdminSDHolder object, which you get
to either via AD users and computers or
ADSI edit.

What access do those other entries marked
as ‘special’ grant to the respective security
principal in that ACL? Unfortunately, the
standard AD security editor does not do the
greatest job of properly converting the SDDL
string stored in the nTSecurityDescriptor
attribute. Even when you open the respective
access control entry (ACE), those special
permissions are often not displayed. So,
you must either find them directly via
PowerShell, through something like (Get-Acl

‘AD:CN=AdminSDHolder,CN=System,D
C=mydom,DC=local’).access, or by using
DSACLS.exe, both of which have an output
that is tough to decipher.

A comparatively easy, powerful, and often
overlooked tool for ACL management is
LDP.exe, which does a perfect job displaying
all ACEs with the relevant information.
Follow these steps to fully display the proper
permissions of your AdminSDHolder object:
Start LDP.exe;

1. Choose Connection > Bind (or Ctrl + B)
and Bind as the currently logged on user;

2. Choose View > Tree (or Ctrl + T) and
select your domain as the BaseDN;

3. In the domain-tree on the left, navigate
to System > AdminSDHolder;

4. Right-click the AdminSDHolder object
and select Advanced > Security Descriptor;

5. Click OK to display the Security
Descriptor;

The resulting window should look similar
to the one in Figure 7. When you compare
this with Figure 6 from the standard security
editor, you can see that even the ACEs are
sorted in the same order.

If you have never updated the
AdminSDHolder permissions with the default
security editor (as used within AD users

Figure 6: Questionable permissions on AdminSDHolder object as displayed by the standard security editor

Grillenmeier

250 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

and computers and ADSIedit), the LDP.exe
security editor even shows you the original
pre-Windows 2000 compatible access ACEs,
split up for many object types. The default
security editor cannot even properly process
those ACEs and simply replaces them with a
generic read permission on any other update
of the ACL; once updated with the default
security editor user interface (UI), those
other ACEs for this group are automatically
removed. This does not happen if the
AdminSDHolder (or any other) permission is
updated with the LDP.exe security editor, so
in general, LDP.exe is the safer option to work
with when updating critical ACLs in AD.

You can now easily confirm that the
everyone and self-permissions are of no
concern. The change password permission
might look dangerous but indicates nothing
other than the rights to change the password

of a user when you know the old one of
that same user (unlike reset password, which
allows an administrator to overwrite any
existing password).

That said, what is the problem with the
highlighted ACEs?

The MSOL_5c0317387a29 (ie ‘MSOL_’
plus a random string) account, highlighted
in orange in Figure 7, is found in most
environments. This account is a default
account that is created automatically during
setup of the Azure AD Connect tool, which
uses the account to synchronise objects
between on-premises AD and Azure AD.
Older versions of Azure AD Connect,
when using the express installation option,
automatically added the account to the
AdminSDHolder ACL to enable control
over the privileged groups and users. If you
configured your Azure AD Connect account

Figure 7: Questionable permissions on AdminSDHolder object as displayed by LDP.exe

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 251

manually or use a newer version of the tool,
you might not find this entry.

You should not replicate any privileged
AD accounts or groups to Azure AD, as
this could lead to additional attack paths
between the two directories. If you follow
that rule, there is no requirement to keep
the sync account permissioned this way, so
you might as well remove the entry from
AdminSDHolder. The sync account itself,
however, must be seen as highly privileged
and sensitive, so removing the ACL here
does not provide much additional reduction
in the AD attack surface.

Not so for the two entries highlighted in
red: the pre-Windows 2000 compatible access3
and authenticated users groups. Both are granted
full read permissions on any privileged object
in AD. This is certainly not ideal; any user (or
computer) in your AD forest can enumerate
the contents of any privileged group (eg
Domain Admins) and list the various group
memberships of any privileged user.

That is exactly how intruders like it: easy
to determine who in your AD to go after and
which account to capture and use to perform
a pass-the-hash or other attack to gain
domain and forest dominance. Your users and
business apps will most likely never need to
look up this information, so why grant it?

The answer is simple: you should not.
Remove these two permissions (including
all other ACEs that might be assigned to the
pre-Windows 2000 compatible access group).

Simply replace them with a permission for
another group; for example, SVC-ADconfig-
AdminSDHolder-READ. Make that group
a domain Local group so that you can
control its membership when you need a
service account or computer object that runs
software that has a legitimate right to read
data from your privileged objects. Using
the domain local group type enables you to
add any users, global or universal groups or
computers from any domain in your AD
forest. You might need this capability for
software or systems that you use to monitor
or administer your AD. For example, if you
run Semperis Directory Services Protector
(DSP), you will want to add the DSP
computer account to that group. But all other
users and computers are cut off from reading
anything about your privileged objects,
which is an effective way to reduce your AD
attack surface. Intruders are simply hindered
from enumerating the proper objects. Note
that this action needs to be repeated for each
domain in your AD forest.

An updated AdminSDHolder template
in the root domain would then look like
Figure 8.

To determine the effect that such changes
will have on your AD security posture, you
should use the rights that an intruder would
have available through a normal domain
user both before and after changing the
permission on the AdminSDHolder object in
your production environment. For the sake

Figure 8: Updated permissions on AdminSDHolder object

Grillenmeier

252 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

of simplicity, this example checks the security
of the root domain in an AD forest, ignoring
the child domain. In reality, you will want to
check the security of all domains in the forest.

USING POWERFUL AD
VULNERABILITY SCANNERS
You can easily perform these straightforward
checks using free tools: the Purple
Knight AD vulnerability scanning tool,4
BloodHound5 and SharpHound (the data-
collector tool of BloodHound). Intruders
often use a combination of SharpHound in
the victim’s network and BloodHound on an
external machine to find the shortest attack
path to the domain admins group.

Both vulnerability scans can easily be
repeated in an AD environment, without
any special configuration, although getting
BloodHound and its dependencies (ie
NEOj4 database, Java JDK) working can

require substantial effort. Purple Knight
requires no installation beyond downloading
and unpacking the corresponding .zip file.

BEFORE ADJUSTING
ADMINSDHOLDER
This example performs both scans as a simple
user, JustArootUser. This user has no special
admin rights in AD but is an authenticated
user in the AD forest. This scenario mimics
the actions of an intruder in your AD
environment.

The first scan, using Purple Knight,
shows 29 indicators of exposure (IOEs) —
vulnerabilities that an intruder could use to
attack AD (see Figure 9).

The BloodHound/SharpHound scan lists
all the domain admin accounts (see Figure
10) that the simple user can access and the
shortest path for that user to the domain
admins group (see Figure 11).

Figure 9: Sample Purple Knight scan result before locking down AdminSDHolder

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 253

Figure 10: Listing all members of the domain admins group with BloodHound

Figure 11: Finding the shortest attack path to the domain admins group via BloodHound

AFTER ADJUSTING
ADMINSDHOLDER
After removing the ACE for the
authenticated users and pre-Windows

2000 compatible access groups from the
AdminSDHolder in the root domain and
adding the ACE for the SVC-ADconfig-
AdminSDHolder-READ group, you must

Grillenmeier

254 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

wait for the SDPROP process to run and
update your privileged objects so that their
nTSecurityDescriptor attributes are updated
with that of the AdminSDHolder template.
This process takes about an hour, but you
can manually trigger the update, as described
later in the paper.

After these actions, a Purple Knight
scan finds only 18 IOEs — 11 fewer
vulnerabilities than before (see Figure 12).

Now that the simple user can no longer
enumerate either the domain admins group
or its members, a BloodHound/SharpHound
scan shows that an intruder would be unable
to see members of the group or locate attack
paths towards them (see Figures 13 and 14).

IS AD SAFE NOW?
Note that the vulnerabilities against privileged
accounts do not fully disappear; they simply
are not easily visible to attackers. But finding

the proper weak spots to attack your AD has
just become much more difficult.

For example, intruders can no longer
see which privileged users are properly
protected by the protected users group — a
group that you want your domain admins
and other privileged users to be a member
of as the group does what its name implies:
protect accounts from various attack vectors,
such as pass-the-hash attacks. With the
lockdown, intruders can no longer plan out
a detailed attack path towards your most
privileged accounts and must find other
ways to compromise your AD. Those ways
are often more complex. If you have proper
monitoring of your AD and endpoints in
place, such attacks might trigger an earlier
alarm for your security operations center
(SOC) team. A combination of tools such
as Microsoft Defender for Identity, Semperis
Directory Services Protector and SentinalOne
XDR will get you quite far in this space.

Figure 12: Sample Purple Knight scan result after locking down AdminSDHolder

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 255

Figure 13: Listing all members of the domain admins group is no longer possible with BloodHound

Figure 14: Trying to find the shortest attack path to the domain admins group via BloodHound also fails

Still, this permission lockdown does not
mean that you can let up on other security
best practices. You should still be serious
about tiering your AD infrastructure. At
minimum, this means that your highest
privileged accounts never log on to any
system other than the domain controllers

(or other highly trusted, Tier 0 systems).
Hiding access to your privileged accounts is
just one aspect of this type of administrative
tiering and specifically addresses the
reconnaissance techniques used by attackers
as described in the MITRE ATT&CK
framework.6

Grillenmeier

256 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

Also keep in mind that the Purple
Knight scan still detected other potential
vulnerabilities, even after lockdown of the
AdminSDHolder. IOEs such as ‘Non-default
principals with DC Sync rights on the
domain’ or ‘Domain trust to a third-party
domain without quarantine’, were still found
via the standard permissions for authenticated
users on other objects in the domain — and
could still be used by intruders for attack
planning.

YOU ARE NOT FINISHED YET …
Now that you have created the SVC-
ADconfig-AdminSDHolder-READ group,
you must still add the proper accounts to
the group, which you want to re-enable for

Figure 15: Locked-down root-domain viewed with a child-domain-admin account, before adding it to the
AdminSDHolder-READ group

reading privileged objects. These accounts
include low-privileged service accounts for
security and management tools, and in a
multi-domain forest, the domain admins of
other domains.

For example, Figure 15 shows a child
domain’s domain admin view of the forest
root objects. This account, which relied
on the authenticated users permissions
in AdminSDHolder, no longer has rights
to read the privileged groups of the root
domain.

This issue is easily fixed by adding
the child domain’s domain admin group
(global) to the local SVC-ADconfig-
AdminSDHolder-READ group in the root
domain. Once you lock down the child
domain, you will need to repeat this task to

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 257

add the root domain’s domain admin group
to the child domain group — or you can
make the special AdminSDHolder group a
universal group in your root-domain, use it
on all the AdminSDHolder templates in that
forest, and add all domain admin groups to
it. Your choice.

It should go without saying: do not
enable inheritance on the AdminSDHolder
template itself. Doing so would invalidate the
entire feature.

Also note that just as you can use
AdminSDHolder to lock down your AD
by removing permissions, intruders can
also use the object to gain persistence in a
compromised AD. To do so, an intruder first
creates some inconspicuous user and hides it
somewhere in your OU structure. They then
assign this user the permission to reset user
passwords in the AdminSDHolder template.
SDPROP does the rest, enabling the intruder
to stay in control. Clearly, you will want
to continuously monitor this template for
changes.

Lastly, as mentioned earlier, you need to
clean up those leftover admins and admin
groups that you might have generated over
the years.

PRIVILEGED OBJECTS CLEAN-UP:
FINDING MISCONFIGURED OBJECTS
The following steps enable you to locate
and clean up objects that were previously
considered privileged by AD (and thus
‘stamped’ via SDPROP by updating their
ACL and setting the adminCount attribute
to ‘1’) but that are no longer members of any
privileged groups:

1. Mark all existing groups with
admincount=1 via the telephoneNumber
attribute (or some other unused attribute)
so that you can more easily locate these
groups again in a later stage of the
clean-up: Get-ADObject-LDAPfilter
“(&(groupType:1.2.840.113556.1.4.803:=
2147483648)(admincount=1))”

| Set-ADObject -Replace @
{telephoneNumber=“adminCount-
Check-20220730”};

2. Clear the current setting on
the adminCount attribute for all
previously found groups: Get-
ADObject -LDAPfilter “(&(group
Type:1.2.840.113556.1.4.803:=
2147483648)(admincount=1))” | Set-
ADObject -Clear “adminCount”;

3. Ensure that the SDPROP process will
restamp all relevant objects:
SDPROP will perform an update only
on relevant objects when a change
occurs on the ACL on either the target
or AdminSDHolder. The easiest way
to ensure that SDPROP will perform
its magic is by manually adding a bogus
ACE (eg Allow ‘Backup Operators’ to
‘List Object’) into AdminSDHolder, then
remove the ACE after your check;

4. Force SDPROP to execute.

You can wait up to 60 minutes for the
SDPROP process to run (ie wait for the
default schedule to trigger the operation).
Or you can force the DC with the
PDCE FSMO role to start the SDPROP
process on your command, by sending the
RunProtectAdminGroupsTask command to
the RootDSE of your domain. The easiest
method is to use LDP.exe as a user with
domain admin privileges: choosing the ‘run
as administrator’ option when launching it,
then:

• Launch LDP.exe, choosing the Run as
administrator option;

• Select Connection > Connect and enter
the DC with PDC emulator role in your
domain;

• Press Ctrl + B or select Connection > Bind
to Bind as the currently logged on user;

• Press Ctrl + M or select Browse > Modify
to start a Modify operation;

• Leave DN: blank and enter
RunProtectAdminGroupsTask as Attribute
and 1 as Value;

Grillenmeier

258 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

• Choose Operation ADD and then click
Enter or press Alt + E;

• When you see the entry [Add]
RunProtectAdminGroupsTask:1 in the
Entry List of the Modify window (see
Figure 16), click the Run button to run
the operation and execute the SDPROP
process.

5. Wait for the SDPROP process to finish
processing. You can either check that
the adminCount=1 attribute returns
to the known objects you expect (eg
the direct members of your domain
admins group) or check your security
event log on the PDCE and validate
that no more events with ID 4780 (task
category: user account management) are
generated. Those events show you which
objects have been reset via the SDPROP
process.

6. Check which groups have not been
updated by using the previous flag and
adding a filter for those groups, where
adminCount is not set to ‘1’: Get-
ADObject-LDAPfilter “(&(group Type:
1.2.840.113556.1.4.803:=21474836

48) (telephoneNumber=adminCount-
Check-20220730)(!(adminCount=1)))”;

7. The result from the last filter are the
objects that you will want to concentrate
on cleaning up soon. They still contain
the ACL from the AdminSDHolder
setting at the time they were a privileged
group, which also means that they do not
inherit any permissions that you might
have set at the OU level;

8. Repeat the same procedure with your
computer and user-accounts. You likely
do not want to use the telephoneNumber
attribute as your temporary
AdminSDHolder-check-flag on the user
objects; perhaps facsimileTelephoneNumber
is no longer being used. The proper
LDAP filter for finding the privileged
users would be: (&(objectClass=user)
(objectCategory=person)
(admincount=1));

9. Remove the bogus ACE from the
AdminSDHolder object after you
determine your clean-up objects.

PRIVILEGED OBJECTS CLEAN-UP:
RESETTING THE ACLS ON
MISCONFIGURED OBJECTS
Using PowerShell to restore ACLs on the
relevant objects is a bit trickier. There is
no simple PowerShell equivalent to the
‘restore defaults’ option that is available in the
advanced security settings UI on AD objects.
Those defaults are stored in the AD schema,
specifically on the defaultSecurityDescriptor
attribute of the relevant object class. When
you click the restore defaults option in the
security UI, the proper class permissions
are read from the schema and then applied
back on the object. If you have only a few
misconfigured objects, this method might be
the easiest way to fix them. But what if you
have many such objects in multiple locations?

One option is to use the DSACLS tool
with the /resetDefaultDACL option, which
restores the security of the object to its
default as defined in the schema; however,

Figure 16: Modify operation on RootDSE with LDP.
exe to invoke SDPROP

Improving your Active Directory security posture: AdminSDHolder to the rescue

© Henry Stewart Publications 2398-5100 (2023) Vol. 6, 3 242–260 Cyber Security: A Peer-Reviewed Journal 259

mixing PowerShell and CLI tools can be
tricky. And although Microsoft has not
created a PowerShell equivalent to process a
direct ACL reset to its default, you can use
the Get-ACL cmdlet to grab the ACL from
another object of the same class, then stamp
that ACL on misconfigured objects via the
Set-ACL cmdlet. Basically, you can copy
and paste ACLs from one object to another
via the PowerShell Get-ACL and Set-ACL
commands.

Because the defaultSecurityDescriptor from
the schema is also read and used at the
creation of any new object of a specific class,
you can just create a dummy object for the
purpose of copying the ACL. The object can
even be a disabled object since its state is not
part of the ACL.

Unfortunately, you cannot just pipe the
output of the Get-ADObject cmdlet into the
Set-ACL cmdlet, as the latter must receive
the object path in a specific format: the
object’s distinguished name (DN) preceded
with ‘AD:’. Therefore, you must loop
through the list of objects returned from
Get-ADObject, form the proper path for
use with Set-ACL, and then execute the
respective command in the loop.

The following PowerShell script
will reset the ACLs of user-class objects
to those of a newly created dummy
account called DefaultUserACL. (The
facsimileTelephoneNumber attribute was
previously flagged to help locate the
misconfigured accounts.)

#Set path for ACLing to AD
Set-Location AD:

#Grab ACL objects from a sample user-
account (e.g. newly created account)
$DefaultAcl = (Get-Acl “AD:CN=
Default UserACL,OU=MyOU,DC=mydo
m,DC=local”)

#query for the old AdminCount objects
that must get their permissions reset
$OldAdminCountObjects =

Get-ADObject -LDAPfilter
“(&(objectClass=user)
(objectCategory=person)(facsimile
TelephoneNumber=adminCount-
Check-20220730)(!(adminCount=1)))”

#work through every object, grab the
DN, create the proper ACL-DN-Path and
set sample ACL on object
ForEach ($Object in
$$OldAdminCountObjects)
{

$ACLpath = “AD:” + $Object.
distinguishedName
write-host “Resetting permissions on”,
$ACLpath
Set-Acl -Path $ACLpath -AclObject
$DefaultAcl

#update flag of object
Set-ADObject -Identity $Object.
distinguishedName -Replace
@{facsimileTelephoneNumber= “ACL
was reset 20220730”}

}

When adapting the script for groups or
computers, be sure to change to the proper
LDAP filter with the attribute you chose to
help you locate those objects. If you prefer,
you could skip the creation of those dummy
objects and use the same loop-logic to run
the DSACLS tools, using the distinguished
name of the object and the /resetDefaultDACL
option. Either method will help you properly
clean up old, privileged objects in your AD.

AD SECURITY REQUIRES ONGOING
ATTENTION
This paper was intended to help you
understand the benefits of the built-in
AdminSDHolder and SDPROP security
feature of AD, which protect your most
privileged objects within your AD, and how
you can lock down those objects even more
for improved protection, with the intention
of combating the reconnaissance phase of an

Grillenmeier

260 Cyber Security: A Peer-Reviewed Journal Vol. 6, 3 242–260 © Henry Stewart Publications 2398-5100 (2023)

2. Smith, R. (January 2018), ‘Active Directory
Security: Understanding the AdminSDHolder
Object’, Petri, available at https://petri.com/
active-directory-security-understanding-
AdminSDHolder-object (accessed 25th September,
2022).

3. Grillenmeier, G. (November 2021), ‘Understanding
the Risks of Pre-Windows 2000 Compatibility
Settings in Windows 2022’, Semperis, available at
https://www.semperis.com/blog/security-risks-
pre-windows-2000-compatibility-windows-2022/
(accessed 25th September, 2022).

4. Purple Knight, ‘Uncover Active Directory
vulnerabilities before attackers do’, available at
https://www.purple-knight.com (accessed 25th
September, 2022).

5. GitHub, ‘BloodHound 4.2.0 – Azure Refactor’,
available at https://github.com/BloodHoundAD
(accessed 25th September, 2022).

6. MITRE ATT&CK, ‘Reconnaissance’, available at
https://attack.mitre.org/tactics/TA0043 (accessed
25th September, 2022).

attack. The harder you make it for intruders
to get to your most privileged objects,
the better. As described, this hardening
method should be accompanied by proper
tiering of your administrative accounts and
active monitoring of your AD and your
endpoints. Securing your AD has always
been important, and the continuous rise of
ransomware attacks emphasises this necessity.

se
1. Mueller, R. and Geelen, P. (September 2020

[November 2011]), ‘Active Directory: LDAP Syntax
Filters’, Microsoft, available at https://social.technet.
microsoft.com/wiki/contents/articles/5392.active-
directory-ldap-syntax-filters.aspx (accessed 25th
September, 2022).

	Improving your Active Directory security posture: AdminSDHolder to the rescue
	RESTRICTING RECONNAISSANCE AND LATERAL MOVEMENT
	LOCKING DOWN AD CAN MAKE THE DIFFERENCE
	YOUR PRIVILEGED OBJECTS ARE A KEY TARGET FOR INTRUDERS
	FINE-GRAINED DELEGATION OF PERMISSIONS WAS A CORNERSTONE OF AD’S SUCCESS
	SDPROP: THE BUILT-IN AD PROTECTION FEATURE
	BEHIND THE SCENES: ADMINSDHOLDER
	THE ROLE OF THE ADMINCOUNT ATTRIBUTE
	A CLOSER LOOK AT ADMINSDHOLDER PERMISSIONS
	USING POWERFUL AD VULNERABILITY SCANNERS
	BEFORE ADJUSTING ADMINSDHOLDER
	AFTER ADJUSTING ADMINSDHOLDER
	IS AD SAFE NOW?
	YOU ARE NOT FINISHED YET
	PRIVILEGED OBJECTS CLEAN-UP: FINDING MISCONFIGURED OBJECTS
	PRIVILEGED OBJECTS CLEAN-UP: RESETTING THE ACLS ON MISCONFIGURED OBJECTS
	AD SECURITY REQUIRES ONGOING ATTENTION
	References

